Code Reviews: Building Better
Code and Stronger Teams

Meeting C++

6th November 2025, Berlin (Germany)




Who Am I?

Sédndor DARGO
Senior Engineer at

Enthusiastic blogger: sandordargo.com

Curious oenophile

Fortunate father of two



http://sandordargo.com

Have you ever received a code
review comment that hurt you?
Frustrated you?

Left you totally confused?



Why This Talk?

Engineering is as much about people as it is about code
But we mostly talk about about code or processes
Code reviews often cause stress and conflict

Done right, they amplify learning, trust, and quality



What Are We Not Covering?

The formatting / style
The technical parts

The “business” process



What Are We Covering?

The Reasons of Code Reviews
The Emotional Parts
Some Language-Agnostic Elements

The Consequences of Good (or Bad) Code Reviews



Agenda

What code reviews are

Different ways to review code

Arguments against dedicated code reviews
Why you should have code reviews
Common pitfalls of code reviews

The AIR Formula for writing better code review comments



What are code reviews?

What are code reviews?




A Tool for Quality Assurance

Catch inconsistencies and maintain standards
Enforce style and architectural patterns
Support readability and maintainability

An opportunity to catch flaws



A Way of Knowledge Sharing

Educate about the used language
Share unfamiliar APIs or internal tools
Explain decisions and context

Avoid “only Sandor knows this code” syndrome

10



Sometimes Even a Way of Mentoring

You might even comment your own code
Elevate jurior less experienced devs by explaining “why” and “how”
Use reviews to grow confidence and skills

A great place to give feedback with empathy

1



Different ways to review code

Different ways to review code

12



13



Pair programming

Real time collaboration
Constant and immediate feedback loop
Great for onboarding and complex problems

The review is a byproduct of the coding process

14



Mob Programming

One person types, others guide
Builds shared understanding
Best for
Exploratory work
Architecture decisions

Bringing the team to the same level

15



Dedicated code review meeting

Typically pre-scheduled
Can include multiple stakeholders

Best for critical code or architecture decisions

16



The async solution: pull requests

Most common style nowadays

It's purely written which can lead to misunderstandings

Not real-time at all

Enables flexibility, but can slow things down

17



Quick Recap: Forms of Code Review

Pair/mob

Meetings

PRs

Pros

Instant feedback, shared
knowledge

Good for alignment,
stakeholder input

Scalable, flexible

Cons
Can be time-intensive, not
scalable

High coordination cost

Delayed feedback, tone
misunderstandings

18



Arguments against dedicated
code reviews

Arguments against dedicated
code reviews

19



“Replace Code Reviews by Pair Programming!”

Pairing catches issues early and improves shared understanding

But lacks reflection time and broader input
Reviews offer a different kind of approach
More deliberate

And less biased by shared context

20



“Code Reviews Slow Us Down”

Increases the “raise-to-merge” latency

The latency can lead to more often merge conflicts

But good reviews prevent costly rework and fallbacks
Async reviews scale better than other review practices

Especially if there is a culture of review-first policy

21



“They Don’t Catch Bugs”™

True: reviews are not a substitute for testing

They’re more effective at catching design flaws, naming, complexity, unclear logic
Review feedback is more about understandability than correctness

But still can catch bugs too

22



Tradeoffs Are Real

Yes, reviews take time

Yes, they’re imperfect

But when done well, the payoff is
Better code
Stronger team

And shared ownership

23



Why you should have code
reviews

Why you should have code
reviews

24



It’'s The Last Line of Defence

Essential for the long-term health of your codebase
The final human check after all the automation
Al helps — and will help more — but it’s not enough

Human insight catches what machines cannot (yet)

25



Offer a Fresh Perspective

Author bias is real — we miss our own mistakes
“What’s obvious to you isn’t obvious to others”

Reviewers can question assumptions or point out edge cases

26



Leverage Diverse Insights

Different specialties notice different things
Different levels of experience focus on different angles

Code quality improves when multiple viewpoints are considered

27



Educate Team Members

Pull requests let senior devs coach through code reviews
Juniors learn idioms, architecture, internal APIs

Great place to share reasoning and alternatives

28



Stronger Personal and Team Relationships

Respectful feedback builds psychological safety
Teams where everyone reviews communicate better

Helps dissolve silos and cliques

29



Code reviews don't just improve code

They improve coders



Common Pitfalls in Code
Reviews

Common Pitfalls in Code
Reviews

31



Feedback Arrives Too Late

Reviews should happen while the author still remembers the details
Reviews should not block merging for too long
Late reviews lead to frustration and resistance

Can result in ignored or rushed changes

32






Focusing on the nits

People often focus on the details — it's easier
The big picture is often missed
Making the details right is important

But the bigger picture is even more important

34



Watch Your Tone

Written feedback lacks tone of voice and body language
Can sound (or be) aggressive or passive-aggressive

Might erode trust and discourage open discussion

35



Reviewing the reviewer

Avoid language that feels personal or judgmental
It's not about “who” but about “what”

Don’t blame, help

We are all learning

Kindness scales better than harsh criticism

36



Bossy or Commanding Language

Avoid phrasing feedback as commands
Invite collaboration, not compliance

Even senior devs should stay humble

37



Comments Lack Priority

Make the intent of your comment understandable
Is it a blocker?
A maybe?
A nit?
Just a question?
Or even a kudos!

Make it clear what you expect as a reviewer

38



Comments Lack Explanation or Educational Value

Vague or unexplained comments frustrate authors
They miss the chance to teach or share reasoning

Without context, authors may blindly comply — or push back

39



When Everything Gets Commented

Receiving feedback on every single line can feel overwhelming and discouraging
It creates the impression of rigid control (there’s only one “right” way)
Developers need some autonomy

Not every decision has to be perfectly optimal

40



Poorly Prepared Pull Requests

Not green PR shared
Self-review not done

Too big PRs

Mix of unrelated changes

No description and entry points shared

41



Quick Recap: Common pitfalls

X Pitfall

Feedback arrives too late

Focusing on the nits

Harsh, judgmental or personal tone

Comments sound bossy or commanding

Comments have unclear priority
Comments lack explanation
Everything is commented

Poorly Prepared Pull Requests

3 Impact

Context is lost, causes frustration or extra work
The bigger picture is not examined
Erodes trust, (feels) personal rather than helpful

Feels like micromanagement, discourages
discussion

Leaves author unsure what needs action
No learning, feels arbitrary
Overwhelming, disempowering — kills autonomy

Too much work for reviewers, they lose focus

42



The AIR Formula for Better
Code Review Comments

The AIR Formula for Better
Code Review Comments

43



A = Action: What Should Be Done?

Phrase feedback as a suggestion, not a command

Use softening language: "consider...", "perhaps...", "

,

Encourage discussion, not compliance

could we.."

44



| = Information: Why It Matters

Explain your reasoning clearly
Helps the author understand intent

Builds shared knowledge

45



R = Reference: Where to Learn More

Link to style guides, docs, or relevant discussions
Helps justify your feedback without debating in the PR

Encourages self-directed learning

46



Putting It All Together

¥ Typical bad comment: Improved Comment (With AIR):

“Rename this.” “Consider renaming this variable to
make it clearer that it represents a
configuration object (Action). It

What's the problem: confused me at first because |

No context assumed it held the results
(Information). Our naming convention
No reasoning suggests clarity over brevity—see

"Choosing names” section of the style
quide (Reference).”

No learning opportunity

Sounds a bit too direct

47


https://google.github.io/styleguide/cppguide.html#General_Naming_Rules
https://google.github.io/styleguide/cppguide.html#General_Naming_Rules

Another example

¥ Typical bad comment: Improved Comment (With AIR):

“Don’t use magic numbers.” “Consider replacing 42 with a named
constant (Action). It’s not clear what
this value represents, so maintaining or
changing it later might be risky
(Information). We recommend
symbolic constants for readability—see
C++ Core Guidelines ES.45
(Reference).”



https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es45-avoid-magic-constants-use-symbolic-constants

Yet another one

¥ Typical bad comment: Improved Comment (With AIR):

“Why did you do it like this?” “Could you explain why this approach
was chosen? (Action) I’'m wondering if
it’s for readability or if there’s a
constraint I'm missing (Information).
We try to document non-obvious
design choices in code
comments—see |mplementation
Comments (Reference).”



https://google.github.io/styleguide/cppguide.html#Implementation_Comments
https://google.github.io/styleguide/cppguide.html#Implementation_Comments

Quick Recap: The AIR Formula

Component Purpose Example

Action What to do “Please consider renaming”

Information Why it matters “To clarify its meaning”

Reference Learn more or justify “See our team style
guide...”

50



Should you always use this formula®?

Maybe — in a perfect world

But the world is not perfect
We are tired
Overwhelmed
Often stressed

Plus a typo is just a typo

Use it when there is a teaching opportunity

51



Time to concludel!



Code Reviews: More Than Just a Process

Code reviews are a tool and investment for quality, learning, and mentorship
Main challenges are tone, timing and clarity
Action, Information, Reference makes comments educative and actionable

With better reviews, have stronger teams, deeper learning, lasting impact

53



Call to Action

Encourage self reviews to catch the obvious

Pick one thing to improve about how you give feedback
Try using the AIR formula in your next review

Talk with your team about your review culture

Start seeing reviews as mentorship opportunities

54




Code Reviews: Building Better
Code and Stronger Teams

Meeting C++

6th November 2025, Berlin (Germany)




